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Abstract

We consider higher dimensional universes in which the universe is constructed from four-
dimensional subuniverses. Independent parameters are introduced for the subuniverses.
We then consider a small coupling between the subuniverses. Emphasis is placed on the
eight-dimensional case. We find that the trends from the computer are in line with the
natural boundary conditions F;-k — ( being satisfied. We do not find any significant
improvement resulting as a consequence of the higher dimensions over and beyond the
four-dimensional work we have done in previous papers.

1. Introduction

There has never been any satisfactory explanation of why the universe can
be described within the framework of four dimensions. This has led many
authors to investigate the consequences of higher dimensional theories begin-
ning with Kaluza (1921). The emphasis has been to a large degree on five-
dimensional theories as this is the simplest extension beyond four dimensions,
A problem in any higher dimensional theory is to build in the apparent four-
dimensional character of the universe, as appears empirically to be the case.

If one has a four-dimensional universe, one might wonder why there are
not more such universes around. This could be accommodated in a higher
dimensional theory of the type 494®4e4e. ., That is, one could have many
independent four-dimensional universes. If this were the case, then it would
appear to any observer that the universe is four-dimensional. Now, suppose
instead of the ‘side by side’f subuniverses being independent, there is a small
coupling between them. Even though we would expect the essential four-

T A problem with five dimensions is that even though we would have four-dimensional
subuniverses stacked next to each other along the fifth direction, the four-dimensional
subuniverse would differ from the neighboring subuniverses by an infinitesimal amount.
Thus, the different four-dimensional subuniverses would not be basically independent as
they are in the approach we have taken.
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dimensional character to be preserved, some effects due to higher dimension
would be introduced into the four-dimensional subuniverses.

What might these effects be? There are some features that come to mind
that could result from this coupling to higher dimensions. For example, it is
possible that there be a creation of matter in our four-dimensional subuniverse
arising from the higher dimensional ‘source’. Such continuous creation has
been postulated in cosmological theories. Another possible effect from the
interrelation with the higher dimensions could be the presence of what appears
to be a stochastic force affecting the motion of a particle. Such forces have
been suggested as giving rise to quantum phenomena (Nelson, 1966; de la Pena-
Auerbach, 1967).

Thus, it may be interesting to explore a universe with dimension 4n, with n
an integer. It seems unreasonable that r should be infinite. At the moment we
have no a priori argument to decide what # should be. We shall consider in
this paper the case of #n = 2. This would be the simplest extension beyond the
conventional four-dimensional world. It is not so unreasonable that a doubling
of dimensions may yet turn out to be relevant. For example, it has never been
understood why there appears to be so much more matter than antimatter in
our own four-dimensional universe, Perhaps, it may be that what we need is a
universe and an antiuniverse which have some coupling between them.

In this paper, we shall discuss an eight-dimensional universe consisting of
two four-dimensional subuniverses which are coupled together. So far as we
know such a structure has not been studied previously. It is of interest to see
what definitive changes occur as a consequence of the additional four dimen-
sions. Comparision will be made with computer studies when the additional
four dimensions are not present.

2. Aesthetic Field Theory

In a series of papers (Muraskin, 1973a, 1973b; Muraskin & Ring, 1973)t
we have been considering a field theory based on aesthetic mathematical ideas.
We have demonstrated the existence of a bounded particle. There is at the same
time, no sign of singularities appearing anywhere. The results are also consistent
with a natural set of boundary conditions at infinity.

In all instances but one, the way we obtained a bounded particle was to
assume that the underlying data (I'g,, Zap) Is invariant under three-dimensional
rotations at some origin point. The one exception to this was data 4 of
Muraskin (1974). However, even in this case, it has not been proved that this
data could not be obtained from a coordinate transformation on some other
data which has the invariance property.

The problem with our invariant type data was that after a long enough
computer run all the field components appear monotonically to approach
zevo. If this situation were to continue, we would not have a universe with

t Further references are found there,
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many particles in it. Now, it is possible that longer computer runs would even-
tually show up additional structure, but it is also possible that this feature
corresponds to a weakness of the theory as it is presently constructed.

In view of the difficulty in obtaining anything but a ‘vacuum’ far away from
the particle, we may ask where is the notion of three-dimensional invariance of
Ff,“y, Zap leading us.

We may add that we have been unable to find a more general set of I',,
Zap satisfying the invariance requirement, beyond that suggested in Muraskin
(1973b). Thus, it would appear that the basic alternatives would involve the
continued running of the computer using the data in Muraskin (1973b), look-
ing for more structure, or else we may have to give up the idea of such an
invariance principle within aesthetic field theory.

However, there is still another alternative, We can go to higher dimensions.
We know that the sixty-fourth I'jg assoc1ated with 7, j, X running from one to
four approach zero far down, say, the x*axis in Muraskin (1973b). But it is
not clear that components like I'}5 which couple the two subuniverses should
also have this property. That is, even though such components are small at the
origin, their change from point to point is small, and so when we go far enough
from the origin these coupling components may even become larger than the
components associated with the four-dimensional subuniverses (having 7, j, k
going from one to four). Thus, their contribution to the four-dimensional
subuniverses may become the dominant contribution and thus these coupling
components may then actually act like a ‘source’ function. This could then
lead to a reversal of monotonic behavior outside the particle.

We note that the effect of the coupling from higher dimensions on the
four-dimensional subuniverses can be compared directly with the case of no
coupling, using the computer, to see if the coupling is capable of leading to
this desired effect.

3. 0(3) Data

We need to specify gqg, FM and ¢%; for the eight-dimensional case. We
chose Fﬁ*z with &, 8, v running from one to four to be identical with the F,k
appearmg in Muraskin (1973b) having R’ k1 # 0. This data led to a maximum
in g44 = goo at the origin and satisfied the integrability equations, The under-
lying data (see equations {10), (11), (12}, (13) of Muraskin (1973b)) is invari-
ant under 0(3). The data for I'g,, with, &, 8, ¥ running from five to eight was
chosen to be identical with data 3 of Muraskin (1974). This also has an under-
lying O(3) invariant structure and satisfied integrability. This data did not lead
to a maximum or minimum in g44 at the origin. All other I'§;, (such as T's,
etc.) were chosen to be zero.

The data for g, with «, § running from one to four was taken to be the g;
data of Muraskin (1973b) used in conjunction with the I'}; data there. For
@,  running from five to eight we took the g; data number 3 from Muraskin
(1974). The remaining g, were chosen to be zero.
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The eight-dimensional e®; were chosen to be

el =1 el =0 ely= els=0

621=0 622=1 623”0 624=0

e3 =0 e3,=0 e =1 e3,=0

et =0 et =0 ety = ety =

¢S = —64x107 &5, = T4x107% e5y=—43x107° €5, =-32x1073
e =-57x107° €% =-82x107  ¢%=92x107 % =-81x107
e’y =—3x107 e =—762x107 ¢’3=—99x107 e’y=-76x107°
% =54x107 €% =-67x107  %=-86x107 €% =-9x107°
els=9x1073 elg=-7x 1072 ely=-8x1073 elg=—7x107
2

e% =85x1073 % =—47x107% €% =—7x107% % =-95x1073
3 =—75x1072 &3 =-8x1073 e3;=-9x 1073 e3g =—856x 1073
et =68x107% % =85x107° e =74x1073 % =954x1072

e =1 e%=0 e5 = e’ =0
eb = eb = 667 =0 €S =0
e’s = e’e=0 e’y =1 e’y =

Thus, if there were no coupling between 1, 2,3, 4 and 5,6, 7, 8 in €%, we
would have two independent four-dimensional universes, and for each we would
get the same results as described in our previous papers. In the case of no
coupling between the subuniverses, components such as I';, however, would
not go to zero at x' = e but would keep the same value they had at x!=0.
Thus, we may anticipate '} goes to a nonzero constant at infinity. Therefore,
it is not clear at this point that we can construct an eight-dimensional theory
satisfying the natural boundary conditions. This is a problem we should look
into after we introduce coupling between the subuniverses.

We have set up the eight-dimensional run in the same manner as described
in Muraskin & Ring (1972). We used, initially, an IBM 360/40 computer. Here
we were getting a hundred points calculated every 75 minutes. Then we
switched to an IBM 370/135 where we obtained 100 points every 23 minutes.
This contrasted with 100 points every 7 minutes we were getting in our four-
dimensional work with the IBM 360/40,

The problem we shall investigate is what effects are implied by the coupling
between the two subuniverses as described by the above e |

4. Computer Results

We ran the computer out to x = 33,000, making this, by far, the longest
run to date. We chose a variable grid so that the value of the corrected I'jy, at
the neighboring point, minus the corrected I'j using half the grid, at this same
point, was kept less than 10710 throughout the run (Muraskin & Ring, 1972).

The F}k with J, j, k£ running from one to four behaved as described in
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Muraskin (1973b). By the time we were at x = 20, all sixty-four were growing
smaller in magnitude. They continued growing smaller in a monotonic fashion,
so far as we could tell from the grid size we used, for the rest of the run. Thus,
no new turnabout points showed up for these components. This was also the
case for the four-dimensional run which we ran concurrently for the sake of
comparison.

Next, we studied components of the type I'is with one index running
between five and eight and the other indices running from one to four. There
was a small number of turnabout points for some of these components (this
result involving turnabout points was true for the other types of components
as well). I'ls started out at -106 x 1072, At x = 33,000 it was —95 x 107%. By
the time we reached the end of the run just about all these components were
decreasing in magnitude. Even though a few of these components were
increasing their magnitude at the end of the run, we found, nevertheless, that
all components of this type were many orders of magnitudes smaller than their
starting values.

Components of the type I'is (with two indices running from five to eight
remained essentially constant as expected from examination of the field
equations, during the early part of the run. For example, I'}s was —61 x 1072
at the origin. Atx = 1692 it was —60 x 1072, However, at x = 33,000 it had
fallen off to -93 x 1075, At the end of the run the large majority of com-
ponents of the type I'is were decreasing in magnitude.

Components of the type I'Sg, for which all indices were in the range five to
eight, tended to remain constant in the first part of the run as expected. I'§g
started out at —1-07. Atx = 19-19 it was —1-06. At x = 2020 we were in the
vicinity of a turnabout point with a value of -33. Its final value was +-046 at
x = 33,000. Again most of the components of this type were decreasing in
magnitude at the end of the run.

In Table 1 we gave the results for '}, T'};, Tk, T'ls, I'8s as a function of x.
Our final value of x was 33,000. Note we could not run the computer with
much reliability much farther than this since, at x = 33,000 we started picking
up components with magnitudes close to 10719, 10710 is the maximum
possible accuracy we can expect with the grid sizes we have been using.

In the beginning of the run, there were 162 components of I'j, that were
increasing in magnitude. At the end of the run,} there were only 10.1 The
trend towards less components getting larger in magnitude is not monotonic
as a result of the existence of turnabout points for the different components.
We note that often in our previous work (Muraskin, 1971) we were accustomed
to field components getting bigger in magnitude. Thus, our decrease in the
number of increasing components from 162 to 10 is all the more striking. Note
also that the magnitude of all but three components at x = 33,000 were smaller
than the corresponding components at the origin.§

+ These numbers were obtained by comparing the components at the beginning and
end of a 100 point run at both the origin and at x = 30,000.

i We ran the computer to x = 165,000 even though some components were less than
10-10, At this point none of the components were increasing in magnitude,

§ At x = 54,000 all components were smaller than their original value.
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Bven though it is not clear that the present trends need necessarily continue
with still more accurate and longer runs, the impression that we get is that
T'j —> 0 for large x is not an unreasonable extrapolation from our present
work.

If there were no coupling between the subuniverses, we would expect
I‘ -*A‘k at infinity with A’k constant. However, even a small coupling, we
see suggests that 4%, may well be zero. This would constitute a set of natural
boundary condmons )

Next, we compared our eight dimension results for [ withi, j, kK running
from one to four with the four-dimensional run. At x = O there was a slight
difference between these two sets of values due to the effect of the small
coupling coefficients %;. The difference at the origin between the two sets was
in the range 1074 to 1076. However, at the end of the run, the difference
between the two sets was no larger than 1072, Thus, the four-dimensional and
eight-dimensional values tended to get closer together although, in general, not
in a monotonic fashion. The difference between the two sets as we approached
the end of the run tended to grow even closer.

In summary, we have found that the four-dimensional and eight-dimensional
values for the sixty-four I'j; differed at the end of the run by an extra-
ordinarily small amount.

We have also repeated the calculation after increasing the coupling ¢%; by a
factor of 100. Also, we tried a run employing data of the type used in Muraskin
(1973a). In both cases we obtained results similar to that which we have
described previously in this paper.

TABLE 1. Representative components as a function of x

x T % I'ls Iis s

0 1-06 2-06 11x 1072 —61x107% —1-07
646 25 98 27 x 1073 —61x1072  —1-07
2516 —-11 22 —92x 1074 —61x 1072 —1-07
806  —-088 03 —78 x 1074 —61x10°2 —1-07
5092 —19x10°2 -95x10°5  —-22x1075 —52x1072 —-44
1865 —-5x10"3 7x1076 —36x%x 1076 —29%x1072 31
3600 —-28x103 -19x106  —-97x1077 —46x 1073 30
11,400 —88x107% -19x10°7 —-85x1078 —15x10™4 ‘13
33,000 —-30x10™% 22x1078%  —95x 107° 93x10°5 046

5. Conclusions

We have introduced higher dimensions in a way different from other authors.
Each four-dimensional subuniverse is assigned parameters independently of the
other four-dimensional subuniverses. We have emphasized the eight-dimensional
case in this paper. Our computer runs were restricted to data for which the
subuniverses had an underlying 0(3) invariant structure. The present work has
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not been successful in confirming our hopes that the higher dimensions would
play a useful role in improving the results we had obtained in our four-
dimensional studies. We foud no significant difference between the values of
I‘}k (i, 7, k running from one to four) in the eight-dimensional run as compared
with the four-dimensional run.

In a more positive vein, it appears that it may be possible to construct
higher dimensional theories in which the subuniverses are coupled, such that
the natural boundary conditions are satisfied.

In the next section, we will consider data not related to data invariant
under 0(3).

6. Data in which all Invariants Vanish

In Muraskin (1972) we found a solution to the integrability equations
having the structure
gy =8%0, (6.1)
$a0%=0

With the use of the field equations we found that (6.1) led to a singular
structure.

We can enlarge the data (6.1) as follows (e, is the antisymmetric symbol
which takes on the values —1, 0, 1)

T8y = 850y +ga, W™ +8505 + \/(“det gaﬁ)gapB}\ CrpBy (6.2)

We find that when
8ap = diag(—1, -1, =1, +1) (6.3)
and
Vo = bo
6o = A0, (6.4)
B, = B¢,

that the R;k, % 0 integrability equations are satisfied provided
0% =0 {6.5)

Since ['g, is constructed from a single independent null vector and from 8agp
in (6.3), it follows that all invariants constructed from I'§,, and g4 are zero.
This is a necessary condition in order that I'lz — 0 at infinity in a system
where g = det g;; % 0 at all points.
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Equation (6.4) can be written as

g B
e Beg
8o Bo
B,=6;-2  By=g, 2 6.6
2=¢2 % 2= ¢, % (6.6)
bo By
0= ha —2 Ba=ds =2
3= 03 %0 3= 03 s

There are four vectors in the decomposition (6.2), but in order to satisfy inte-
grability they must all be parallel at least at the origin. From (6.2) we can solve
for 8, ¢y, B,. We get

5Ty — 21,

]
@ 18
A A
o = W (6.7)
aBAx
b \/("'det gocﬁ)

An % transformation will preserve the structure (6.2) and the resulting
data will still obey the integrability equations, The €% transformation leads to

S N < o
ij = Ly eﬁ]’ elykrgy

g =e%e 8,*'80@6

¢; = ¢ (©.8)
] i = €a{¢a
B;=e%B,

V(—det £ap) €apys acts like a fourth-tank tensor under the %; transformation.
Thus, after an e%; transformation we have

The = 8o + g’ +856; + V(-8)g"" B ermix (6.9)
From (6.7) and I‘}'k,., =0, g;j:x = 0 we get for the change of 0;, B;, ¢;
dg; = Tiyg; dx*

d; = Tly; ax* (6.10)
dB; = T} B; dx*
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We used 3\/(—£)/0x’ = \/(~g)T'} which follows from g = 0. In T}, = 0,
8ij;k = 0 theory, all vector functions of F}k,g,-]-, 9, change according to

dA; =T} 4; dx* 6.11)

We see that ¢;, 0;, B; ascribe to this law as expected. We next find that I‘}:k has
the structure (6.9) at all points if it has it at one point. To prove this we note

{The — (80 + gV’ +5%8; + V(=& B’ egmizc)},; =0 (6.12)
This follows since the individual terms obey an equation of the type
Tl .a=0 ©.13)

Expanding the semi-colon derivative and using the fact that (6.9) holds at the
origin we get

5;7{1“}1‘: — (%9, +gpy’ +8k0; + V(—2)&" B enmjr)} =0 (6.14)

In a similar fashion we see that all derivatives of the curly brackets vanish and
thus the curly bracket is constant. Since it is zero, at the origin, it is then zero
everywhere. Thus, I’} has the structure (6.9) at all points.
We can also show that A4 and B in (6.4) are constants. From (6.8) we have
6; = Ag; etc. Thus, db; = A do; + dA¢;. But, from (6.10) and (6.14) we see
dAa =0.
From (6.7) we get
¢ :
LU —————SF‘? 21:’0 (6.15)
¢o 40 —Tor
From (6.6) and (6.4) we have A = /¢ The quantity on the right side was
calculated at various points down the x-axis by the computer. We found 4 to
be constant to computer accuracy as expected from above,
We can now prove that the data (6.2) leads to singular structure. From
(6.10) together with (6.9) we get, on using ¢;¢' =0

99

ko (1+A):9 (6.16)

This differential equation is not too different from the equation solved in

Muraskin (1972) which had a singular structure. We can easily show thata

singularity must develop from (6.16). Let us take i = 1, k = 1. Then we get
do, =(1 +A)p? dx? (6.17)

If 1 + A4 is positive when we proceed down the x-axis, we will be continually
adding positive contributions to the function at the origin. Thus a singularity
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must eventually develop. If 1 + A4 is negative, the same situation will occur
along the —x-axis.

Thus, in going from the data (6.1) to the more involved data (6.2), we still
have not got around the problem of singularities.

On the other hand, in our previous work we had a four vector decomposition
for which there was no sign of singularities developing anywhere in our com-
puter work (Muraskin & Ring, 1972). On scrutiny, however, there are differ-
ences between this vector decomposition and (6.9). The vector in our previous
work was not null, Also, there are minus sign differences. In Muraskin (1972)
we pointed out that if we go to eight dimensions it is no longer a foregone
conclusion that singularities will still develop. =/, ¢;¢' will no longer be zero
if there is a coupling between the subuniverses. In eight dimensions I'g, does
not have the structure (6.2) since, for example, if ¢; # 0 then I'3; would be
non-zero if we had a vector decomposition. But we now have I'3; = 0. The
question is whether the coupling between the four-dimensional subuniverses
can lead to damping effect. In the next section we shall discuss our computer
results for this problem.

7. Computer Results

We have chosen I'§y, gq4, €% as follows.
I'§y: @, B, v running from one to four:

$1="2 $2=3  ¢3='6  Ps=¢o="7

7.1
A= B=34 (7.1)
8op = diag. (=1, -1, ~1, +1).
I'gy: a, B, ¥ running from five to eight:
¢ =2 $="3 ¢3 =6 Ga="7
B=1 A=0 (7.2)

Zop = diag. (+1, +1, +1, —1)

All other I'§,,, g, were chosen to be zero. We then required that goo be 2
maximum or minimum at the origin by calculating €%, €%, €03 in the manner
described in Muraskin (1971). We chose e%; to be

ely=9 ely=—13 ely=—-187 ely=—34
e’ =21 4= e%=—24 €% =082
=17 &% =-26 33 =65 e =—163 (73)
0o -
€~ —71

The data above describe two independent four-dimensional subuniverses.
We next introduced coupling between the two subuniverses by means of eight-
dimensional ¢%;.
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el =1 62—0 3=0  el4=0
220 Tl i X ei‘* - (4
e’1 =0 e’y = e’y = € 4 =
4=0 eeHh=0 e%H=0 p =1
e%5 =99 e56 =-97 eS =25 ey =47
ebs =12 6 =—-34 ey = —27 e =98 (7.5)
e’s =24 e’ K 34 e’y =76 e’y =—96
e =-18 =16 e®y = —43 % =86
els=9x1073 eié =7x1073 ely=-8x1073 elg=—7x1073
e%s=-85x1073 =—47x107% % =—-7x107% % =—95x1073
e3s=—75x1073 e(,~8x103 e =91x1072 33 =—-856x1073
et =-68x107 e =-85x107 €% =-7T4x1073  ef5=—954x1073
(7.6)
Sy =—64x1073 €5 =—74x10"3 e55=—43x1073 % =32x1073
€5 =-57x 107 % =-82x103 €% =-92x1073 % =-81x1073
e’y =—3x107% 7, =—-762x1073 73--—99x10' e, =76 x 1073
€8 =-54x1073 €8, =67x10"0 €% =-86x10"3 8, =9x1073
(1.7

We ran this alongside the four-dimensional data given by (7.1) and (7.3). In our
previous discussion based on 0(3) invariant data we found essentially no differ-
ence between the four-dimensional and eight-dimensional run so far as I‘]k,

i, J, k running from one to four. However, this was not the case here. The differ-
ence between the results for the four- and eight-dimensional run showed a
definite increase in magnitude as we went down the x-axis, and the percentage
increase was comparable to the percentage increase of a representative
component.

The problem we encounter at this point is that the four-dimensional run we
know will lead to singularities. When we considered the four-dimensional case
on the computer we found many components were monotonically increasing
suggesting a singularity was developing. There were a few components that had
a turnabout point close to the origin. However, for the components that we
graphed, we did not find any component having more than one turnabout
point by the time we reached x = -567. The eight-dimensional run, although
slightly different from the four-dimensional run, was still only different from
the four-dimensional case for F}k i, j, k = 1-4 in the second or third decimal
place at x = -567. Thus, it became clear to us that if any damping was to occur
it would involve an unfeasibly long run before we might hope to see it. Hence
we decided to increase the coupling in (7.6) and (7.7) to make the four-dimen-
sional and eight-dimensional runs differ by a substantial amount at the origin.
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We decided to make the coupling terms so large that the coupling I'}z
became even larger in many instances than I'j 4, j, k running for one to four.
We then investigated whether a bound appeared. We chose to replace (7.6)
and (7.7) with

els =19 elg=—4 el; =216 elg = —-315

e =112  e%=—24 e =13 e =36 7.8)
e =—19 e%=-28 e3; =21 e’ = —-16

et =—11 % =-32 et =222 es =123

els =19 elg=—34 el; =08 elg =38

e% =321  e% =-425 e% =254 e% = —159 (79)
e ="14 e =251 e =—3 e =2

e =085 e=—-16 e = —135 ey = —342

Unfortunately we did not find significant differences, so far as we could tell,
between this run and the previous run which employed (7.7) and (7.8). There
were somewhat more turnabout points for 7, j, k running from one to four.
But again, there was one or no turnabout point per component (we did find a
component that had two turnabout points). We ran to x = 1-077 and observed
a trend toward runaway components. For example, we had

T T
x=0 —-82 66
x=-3 -221 031
x =606 —6-51 4-48
x=-975 —44+47 6297
x = 1-077 —112-12 180-64

Taking differences of the field I'/y between the origin and x = -06 we found
404 components increasing in magnitude. In the region about x = 1°077, 465
out of a possible 512 were increasing in magnitude. Note, this is the opposite
kind of behavior that we obtained in the first part of this paper. This sugges®
the possibility that if we continue running we may well end up with all 512
components increasing in magnitude. It is never clear whether trends of this
sort will eventually reverse themselves. However, we have not seen, thus far,
any indication that a damping mechanism is at work.

8. Conclusion

Our approach to higher dimensions has, so far as we know, not been inves-
tigated previously. But from a practical point of view we have found no
improvement in the results of our previous papers.

However, it may still be the case that our approach could have some
validity. We have seen that the kind of results we obtained in this paper has
been critically dependent on the form of the initial data. Four our 0(3)
invariant data we found no significant difference for the values of I‘;k G k=
1-4) in the eight-dimensiona! and four-dimensional cases after long runs down
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an axis. On the contrary, our data in Section 7 did not approach the four-
dimensional results. Thus, it may be that there exists a set of as yet unknown
data for which the higher dimensions may lead to some of the desirable effects
discussed in Section 1.
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